Practice of Epidemiology Constructing Inverse Probability Weights for Marginal Structural Models
نویسندگان
چکیده
The method of inverse probability weighting (henceforth, weighting) can be used to adjust for measured confounding and selection bias under the four assumptions of consistency, exchangeability, positivity, and no misspecification of the model used to estimate weights. In recent years, several published estimates of the effect of time-varying exposures have been based on weighted estimation of the parameters of marginal structural models because, unlike standard statistical methods, weighting can appropriately adjust for measured time-varying confounders affected by prior exposure. As an example, the authors describe the last three assumptions using the change in viral load due to initiation of antiretroviral therapy among 918 human immunodeficiency virus-infected US men and women followed for a median of 5.8 years between 1996 and 2005. The authors describe possible tradeoffs that an epidemiologist may encounter when attempting to make inferences. For instance, a tradeoff between bias and precision is illustrated as a function of the extent to which confounding is controlled. Weight truncation is presented as an informal and easily implemented method to deal with these tradeoffs. Inverse probability weighting provides a powerful methodological tool that may uncover causal effects of exposures that are otherwise obscured. However, as with all methods, diagnostics and sensitivity analyses are essential for proper use.
منابع مشابه
Constructing inverse probability weights for continuous exposures: a comparison of methods.
Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse p...
متن کاملConstructing inverse probability weights for marginal structural models.
The method of inverse probability weighting (henceforth, weighting) can be used to adjust for measured confounding and selection bias under the four assumptions of consistency, exchangeability, positivity, and no misspecification of the model used to estimate weights. In recent years, several published estimates of the effect of time-varying exposures have been based on weighted estimation of t...
متن کاملMarginal structural models as a tool for standardization.
In this article, we show the general relation between standardization methods and marginal structural models. Standardization has been recognized as a method to control confounding and to estimate causal parameters of interest. Because standardization requires stratification by confounders, the sparse-data problem will occur when stratified by many confounders and one then might have an unstabl...
متن کاملMarginal structural Cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort.
Longitudinal observational data are required to assess the association between exposure to β-interferon medications and disease progression among relapsing-remitting multiple sclerosis (MS) patients in the "real-world" clinical practice setting. Marginal structural Cox models (MSCMs) can provide distinct advantages over traditional approaches by allowing adjustment for time-varying confounders ...
متن کاملRobust Estimation of Inverse Probability Weights for Marginal Structural Models
Marginal structural models (MSMs) are becoming increasingly popular as a tool to make causal inference from longitudinal data. Unlike standard regression models, MSMs can adjust for time-dependent observed confounders while avoiding the bias due to the adjustment for covariates affected by the treatment. Despite their theoretical appeal, a main practical difficulty of MSMs is the required estim...
متن کامل